organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2-(2-{[(benzyloxy)carbonyl]amino}propan-2-yl)-5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxylate

Zhenhua Shang,* Jing Ha, Yifeng Yu and Xiaodan Zhao

College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China Correspondence e-mail: zhenhuashang@yahoo.com.cn

Received 20 March 2011; accepted 29 April 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.103; data-to-parameter ratio = 16.6.

In the title compound, C17H19N3O6, the dihedral angle between the two aromatic rings is 45.9 (1)°. The crystal structure is stabilized through intermolecular N-H···O hydrogen bonds and intramolecular O-H···O hydrogen bonds are also present.

Related literature

For related structures, see: Fun et al. (2009); Shang & Shang (2007). The title compound is an intermediate in the preparation of the antiretroviral drug raltegravir [systematic name N-(2-(4-(4-fluorobenzylcarbamoyl)-5-hydroxy-1-methyl-6-oxo-1,6-dihydropyrimidin-2-yl)propan-2-yl)-5-methyl-1,3,4-oxadiazole-2-carboxamide. For therapeutic details of raltegravir, see Steigbigel et al. (2008). For synthetic details, see: Culbertson (1979).

Experimental

Crystal data C17H19N3O6

 $M_r = 361.35$

Monoclinic, $P2_1/c$	Z = 4
a = 12.122 (2) Å	Mo $K\alpha$ radiation
b = 16.300 (3) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 9.1766 (18) Å	T = 113 K
$\beta = 106.29 \ (3)^{\circ}$	$0.24 \times 0.20 \times 0.16 \text{ mm}$
V = 1740.4 (6) Å ³	
Data collection	

Data collection Daulton CMADT diffusitore at

Bruker SMART diffractometer	15564 measured reflections
Absorption correction: multi-scan	4142 independent reflections
(SADABS; Bruker, 1997)	3386 reflections with $I > 2\sigma(I)$
$T_{min} = 0.975, T_{max} = 0.983$	$R_{int} = 0.035$
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.103$ H atoms treated by a mixture of independent and constrained S = 1.09refinement $\Delta \rho_{\rm max} = 0.33$ e Å⁻³ 4142 reflections $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$ 250 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} N3 - H3 \cdots O5^{i} \\ N2 - H2 \cdots O2^{ii} \\ O1 - H1 \cdots O3 \end{array}$	0.882 (15)	2.133 (15)	2.8911 (14)	143.7 (12)
	0.938 (16)	1.886 (16)	2.8135 (16)	169.3 (13)
	0.918 (17)	1.788 (17)	2.6163 (14)	148.7 (16)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) -x + 1, -y, -z + 2.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the funds of Hebei Province Science and Technology Research and Development Projects (No. 08276409D) and Hebei University of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2426).

References

Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Culbertson, T. P. (1979). J. Heterocycl. Chem. 16, 1423-1424.

Fun, H.-K., Balasubramani, K., Hazra, A., Kumar Das, M. & Goswami, S. (2009). Acta Cryst. E65, 01484-01485.

Shang, Z.-H. & Shang, Q. (2007). Acta Cryst. E63, o2280-o2281.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Steigbigel, R. T., et al. (2008). N. Engl. J. Med. 359, 339-354.

supplementary materials

Acta Cryst. (2011). E67, o1336 [doi:10.1107/S1600536811016278]

Methyl 2-(2-{[(benzyloxy)carbonyl]amino}propan-2-yl)-5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxylate

Z. Shang, J. Ha, Y. Yu and X. Zhao

Comment

Raltegravir (MK-0518, brand name Isentress), an antiretroviral drug produced by Merck & Co, is used to treat HIV infection (Steigbigel *et al.*, 2008). It received FDA approval in October 2007, the first of a new class of HIV drugs, the integrase inhibitors, to receive such approval. The title compound is a key intermediate in the preparation of Raltegravir.

The pyrimidinone ring is planar, as it is in a related compound (Fun *et al.*, 2009). This is in contrast with another related compound (Shang *et al.*, 2007), where the heterocyclic ring is twisted. In the title compound the dihedral angle between the two aromatic rings is 45.9 (1)°. The crystal structure is stabilized through intermolecular N—H…O hydrogen bonds; intramolecular O—H…O hydrogen bonds are also present.

Experimental

The title compound was prepared by a published method (Culbertson, 1979). To a slurry of benzyl 1-amino-1-(hydroxyimino)-2-methylpropan-2-ylcarbamate (2.9 g) in methanol (12 ml) was added dimethyl acetylenedicarboxylate (1.77 g) slowly at room temperature. After 1.5 h, the mixture was added to xylene (20 ml). The reaction mixture was then heated to reflux for 2 h and cooled to 60 °C. Methyl tert-butyl ether (9 ml) was added slowly to build a seed bed. The batch was then cooled to 0 °C for 14 h, and then further cooled to -5 °C and allowed to stand for 1 h before filtration. The solid was washed with methyl tert-butyl ether (4 ml) and dried. 50 mg of the title compound was dissolved in 30 ml methanol and the solution was kept at room temperature for 10 d. Natural evaporation gave colorless single crystals of the title compound which were suitable for X-ray analysis.

Refinement

All H atoms attached to C atoms were positioned geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (methyl group) and 0.99 Å (methylene group). $U_{iso}(H) = xU_{eq}(C)$, where x = 1.5 for methyl H and 1.2 for all other carbon-bound H atoms. The positional parameters of the nitrogen-bound H and oxygen-bound H atoms were refined freely (N—H = 0.882 (15) and 0.938 (16) Å; O—H = 0.918 (17) Å).

Figures

Fig. 1. The molecular structure of the title compound, drawn with 30% probability ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.

Fig. 2. The packing of the title compound, viewed down the *a* axis. The dashed lines indicate the hydrogen bonds.

Fig. 3. The formation of the title compound.

Methyl 2-(2-{[(benzyloxy)carbonyl]amino}propan-2-yl)-5-hydroxy- 6-oxo-1,6-dihydropyrimidine-4-carboxylate

Crystal data

C ₁₇ H ₁₉ N ₃ O ₆	$D_{\rm x} = 1.379 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 361.35$	Melting point = 183–185 K
Monoclinic, $P2_1/c$	Mo K α radiation, $\lambda = 0.71073$ Å
a = 12.122 (2) Å	Cell parameters from 4990 reflections
b = 16.300 (3) Å	$\theta = 2.5 - 27.9^{\circ}$
c = 9.1766 (18) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\beta = 106.29 \ (3)^{\circ}$	<i>T</i> = 113 K
V = 1740.4 (6) Å ³	Plate, colorless
Z = 4	$0.24\times0.20\times0.16~mm$
F(000) = 760	

Data collection

Bruker SMART diffractometer	4142 independent reflections
Radiation source: rotating anode	3386 reflections with $I > 2\sigma(I)$
confocal	$R_{\rm int} = 0.035$
ω scans	$\theta_{\text{max}} = 27.9^\circ, \ \theta_{\text{min}} = 2.5^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1997)	$h = -15 \rightarrow 15$
$T_{\min} = 0.975, T_{\max} = 0.983$	$k = -21 \rightarrow 18$
15564 measured reflections	$l = -11 \rightarrow 12$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.103$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.09	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0539P)^{2} + 0.1964P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4142 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
250 parameters	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$

0 restraints

 $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. 1*H*-NMR (500 MHz, DMSO) 1.51(s, 6H), 3.82(s, 3H), 4.98(s, 2H), 7.35(bs, 5H), 7.45 (s, 1H), 10.24(s, 1H), 12.58(s, 1H)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.18567 (8)	0.11941 (5)	0.81459 (10)	0.0159 (2)
0.36822 (8)	0.06461 (6)	0.92786 (11)	0.0179 (2)
0.39582 (8)	0.18366 (6)	1.15086 (11)	0.0170 (2)
0.28432 (8)	-0.00917 (5)	0.54614 (9)	0.0247 (2)
0.45987 (7)	-0.02265 (5)	0.80609 (9)	0.0282 (2)
0.08230 (7)	0.05655 (5)	0.42611 (9)	0.0234 (2)
0.01176 (7)	0.14406 (5)	0.56692 (9)	0.01951 (19)
0.40819 (7)	0.26902 (6)	0.95868 (9)	0.0279 (2)
0.54363 (7)	0.26725 (5)	1.18631 (10)	0.0285 (2)
0.27523 (9)	0.11186 (6)	0.93025 (12)	0.0148 (2)
0.18776 (9)	0.07855 (6)	0.68378 (12)	0.0160 (2)
0.27744 (10)	0.03116 (7)	0.67123 (12)	0.0176 (2)
0.37656 (10)	0.02098 (7)	0.80389 (13)	0.0196 (2)
0.27947 (9)	0.15246 (6)	1.08134 (12)	0.0157 (2)
0.18968 (10)	0.22037 (7)	1.05981 (14)	0.0215 (3)
0.1929	0.2448	1.1585	0.032*
0.1130	0.1973	1.0147	0.032*
0.2055	0.2626	0.9924	0.032*
0.25766 (11)	0.08712 (7)	1.18957 (13)	0.0216 (3)
0.3156	0.0437	1.2026	0.032*
0.1810	0.0635	1.1472	0.032*
0.2624	0.1122	1.2882	0.032*
0.08872 (9)	0.09093 (7)	0.54685 (12)	0.0171 (2)
-0.07754 (10)	0.16603 (8)	0.43090 (14)	0.0259 (3)
-0.0423	0.1845	0.3526	0.039*
-0.1245	0.2103	0.4542	0.039*
-0.1262	0.1181	0.3938	0.039*
0.44448 (10)	0.24266 (7)	1.08715 (13)	0.0185 (2)
0.60365 (11)	0.33419 (8)	1.13972 (14)	0.0266 (3)
	x 0.18567 (8) 0.36822 (8) 0.39582 (8) 0.28432 (8) 0.45987 (7) 0.08230 (7) 0.01176 (7) 0.40819 (7) 0.54363 (7) 0.27523 (9) 0.18776 (9) 0.27744 (10) 0.37656 (10) 0.27947 (9) 0.18968 (10) 0.1929 0.1130 0.2055 0.25766 (11) 0.3156 0.1810 0.2624 0.08872 (9) -0.07754 (10) -0.0423 -0.1245 -0.1262 0.44448 (10) 0.60365 (11)	x y $0.18567(8)$ $0.11941(5)$ $0.36822(8)$ $0.06461(6)$ $0.39582(8)$ $0.18366(6)$ $0.28432(8)$ $-0.00917(5)$ $0.45987(7)$ $-0.02265(5)$ $0.08230(7)$ $0.05655(5)$ $0.01176(7)$ $0.14406(5)$ $0.40819(7)$ $0.26902(6)$ $0.54363(7)$ $0.26725(5)$ $0.27523(9)$ $0.11186(6)$ $0.18776(9)$ $0.07855(6)$ $0.27744(10)$ $0.03116(7)$ $0.37656(10)$ $0.02098(7)$ $0.27947(9)$ $0.15246(6)$ $0.18968(10)$ $0.22037(7)$ 0.1929 0.2448 0.1130 0.1973 0.2055 0.2626 $0.25766(11)$ $0.08712(7)$ 0.3156 0.0437 0.1810 0.0635 0.2624 0.1122 $0.08872(9)$ $0.09093(7)$ $-0.07754(10)$ $0.16603(8)$ -0.1245 0.2103 -0.1245 0.2103 -0.1245 0.2103 -0.1245 0.2103 -0.1262 0.1181 $0.44448(10)$ $0.24266(7)$ $0.60365(11)$ $0.33419(8)$	x y z 0.18567 (8) 0.11941 (5) 0.81459 (10) 0.36822 (8) 0.06461 (6) 0.92786 (11) 0.39582 (8) 0.18366 (6) 1.15086 (11) 0.28432 (8) -0.00917 (5) 0.54614 (9) 0.45987 (7) -0.02265 (5) 0.80609 (9) 0.08230 (7) 0.05655 (5) 0.42611 (9) 0.01176 (7) 0.14406 (5) 0.56692 (9) 0.40819 (7) 0.26902 (6) 0.95868 (9) 0.54363 (7) 0.26725 (5) 1.18631 (10) 0.27523 (9) 0.11186 (6) 0.93025 (12) 0.18776 (9) 0.07855 (6) 0.68378 (12) 0.27744 (10) 0.03116 (7) 0.67123 (12) 0.37656 (10) 0.02098 (7) 0.80389 (13) 0.27947 (9) 0.15246 (6) 1.08134 (12) 0.18968 (10) 0.22037 (7) 1.05981 (14) 0.1929 0.2448 1.1585 0.1130 0.1973 1.0147 0.2055 0.2626 0.9924 0.25766 (11) 0.08712 (7) 1.18957 (13) 0.3156 0.0437 1.2026 0.1810 0.0635 1.1472 0.2624 0.1122 1.2882 0.08872 (9) 0.90993 (7) 0.54685 (12) -0.07754 (10) 0.16603 (8) 0.43090 (14) -0.0423 0.1845 0.3526 -0.1245 0.2103 0.4542 -0.1262 0.1181 0.3938 0.44448 (10) 0.24266 (7) 1.08715 (13)<

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H11A	0.5518	0.3818	1.1074	0.032*
H11B	0.6333	0.3173	1.0541	0.032*
C12	0.70133 (10)	0.35578 (7)	1.27658 (13)	0.0206 (3)
C13	0.68387 (11)	0.36043 (8)	1.41951 (14)	0.0247 (3)
H13	0.6100	0.3491	1.4314	0.030*
C14	0.77345 (11)	0.38150 (8)	1.54519 (15)	0.0284 (3)
H14	0.7609	0.3838	1.6427	0.034*
C15	0.88144 (11)	0.39923 (8)	1.52900 (16)	0.0302 (3)
H15	0.9424	0.4144	1.6149	0.036*
C16	0.89961 (11)	0.39465 (8)	1.38730 (16)	0.0282 (3)
H16	0.9733	0.4067	1.3755	0.034*
C17	0.80992 (10)	0.37236 (7)	1.26174 (15)	0.0230 (3)
H17	0.8232	0.3685	1.1648	0.028*
H3	0.4221 (12)	0.1800 (8)	1.2505 (17)	0.024 (3)*
H2	0.4269 (13)	0.0577 (9)	1.0186 (18)	0.036 (4)*
H1	0.2178 (15)	0.0049 (10)	0.474 (2)	0.045 (5)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0170 (5)	0.0159 (4)	0.0139 (4)	-0.0015 (3)	0.0029 (4)	-0.0008 (3)
N2	0.0177 (5)	0.0210 (5)	0.0134 (4)	0.0034 (4)	0.0014 (4)	-0.0024 (4)
N3	0.0182 (5)	0.0189 (5)	0.0116 (4)	-0.0021 (4)	0.0004 (4)	-0.0005 (4)
01	0.0292 (5)	0.0293 (5)	0.0143 (4)	0.0056 (4)	0.0038 (4)	-0.0051 (3)
O2	0.0265 (5)	0.0372 (5)	0.0188 (4)	0.0140 (4)	0.0029 (4)	-0.0049 (4)
O3	0.0259 (5)	0.0283 (4)	0.0135 (4)	-0.0018 (3)	0.0012 (3)	-0.0026 (3)
04	0.0173 (4)	0.0220 (4)	0.0158 (4)	0.0007 (3)	-0.0010 (3)	0.0012 (3)
O5	0.0294 (5)	0.0371 (5)	0.0142 (4)	-0.0095 (4)	0.0009 (3)	0.0056 (4)
O6	0.0273 (5)	0.0334 (5)	0.0189 (4)	-0.0152 (4)	-0.0031 (4)	0.0055 (4)
C1	0.0154 (5)	0.0143 (5)	0.0147 (5)	-0.0011 (4)	0.0040 (4)	0.0004 (4)
C2	0.0180 (6)	0.0156 (5)	0.0129 (5)	-0.0018 (4)	0.0019 (4)	0.0005 (4)
C3	0.0227 (6)	0.0164 (5)	0.0130 (5)	-0.0011 (4)	0.0037 (4)	-0.0015 (4)
C4	0.0220 (6)	0.0202 (6)	0.0158 (5)	0.0029 (4)	0.0040 (4)	-0.0011 (4)
C5	0.0158 (5)	0.0169 (5)	0.0135 (5)	-0.0011 (4)	0.0025 (4)	-0.0028 (4)
C6	0.0209 (6)	0.0212 (6)	0.0209 (6)	0.0033 (4)	0.0034 (5)	-0.0051 (5)
C7	0.0265 (6)	0.0216 (6)	0.0182 (6)	-0.0037 (4)	0.0087 (5)	-0.0015 (4)
C8	0.0183 (6)	0.0171 (5)	0.0149 (5)	-0.0043 (4)	0.0031 (4)	0.0009 (4)
C9	0.0209 (6)	0.0308 (7)	0.0201 (6)	0.0011 (5)	-0.0037 (5)	0.0048 (5)
C10	0.0197 (6)	0.0209 (5)	0.0139 (5)	-0.0017 (4)	0.0030 (4)	-0.0018 (4)
C11	0.0276 (7)	0.0319 (7)	0.0181 (6)	-0.0124 (5)	0.0028 (5)	0.0028 (5)
C12	0.0208 (6)	0.0190 (5)	0.0204 (6)	-0.0025 (4)	0.0034 (5)	0.0002 (4)
C13	0.0195 (6)	0.0305 (6)	0.0230 (6)	-0.0005 (5)	0.0041 (5)	-0.0011 (5)
C14	0.0306 (7)	0.0309 (7)	0.0206 (6)	0.0027 (5)	0.0020 (5)	-0.0040 (5)
C15	0.0239 (6)	0.0263 (6)	0.0317 (7)	-0.0014 (5)	-0.0067 (5)	0.0005 (5)
C16	0.0172 (6)	0.0249 (6)	0.0390 (7)	-0.0007 (5)	0.0019 (5)	0.0080 (6)
C17	0.0236 (6)	0.0202 (6)	0.0262 (6)	0.0016 (4)	0.0084 (5)	0.0042 (5)

Geometric parameters (Å, °)

N1—C1	1.2937 (14)	C6—H6A	0.9800
N1—C2	1.3792 (14)	С6—Н6В	0.9800
N2—C4	1.3692 (15)	С6—Н6С	0.9800
N2—C1	1.3704 (14)	C7—H7A	0.9800
N2—H2	0.938 (16)	С7—Н7В	0.9800
N3—C10	1.3446 (15)	С7—Н7С	0.9800
N3—C5	1.4663 (14)	С9—Н9А	0.9800
N3—H3	0.882 (15)	С9—Н9В	0.9800
O1—C3	1.3456 (14)	С9—Н9С	0.9800
O1—H1	0.918 (17)	C11—C12	1.5062 (16)
O2—C4	1.2308 (14)	C11—H11A	0.9900
O3—C8	1.2245 (14)	C11—H11B	0.9900
O4—C8	1.3230 (14)	C12—C17	1.3874 (18)
O4—C9	1.4491 (13)	C12—C13	1.3881 (18)
O5—C10	1.2154 (14)	C13—C14	1.3872 (17)
O6—C10	1.3489 (13)	С13—Н13	0.9500
O6—C11	1.4413 (14)	C14—C15	1.389 (2)
C1—C5	1.5242 (15)	C14—H14	0.9500
C2—C3	1.3646 (16)	C15—C16	1.380 (2)
C2—C8	1.4881 (15)	C15—H15	0.9500
C3—C4	1.4602 (16)	C16—C17	1.3924 (18)
C5—C6	1.5259 (15)	C16—H16	0.9500
C5—C7	1.5291 (16)	C17—H17	0.9500
C1—N1—C2	116.87 (10)	Н7А—С7—Н7С	109.5
C4—N2—C1	123.91 (10)	H7B—C7—H7C	109.5
C4—N2—H2	117.4 (9)	O3—C8—O4	123.86 (10)
C1—N2—H2	118.4 (9)	O3—C8—C2	122.24 (11)
C10—N3—C5	123.00 (9)	O4—C8—C2	113.87 (9)
C10—N3—H3	115.1 (9)	O4—C9—H9A	109.5
C5—N3—H3	116.8 (9)	O4—C9—H9B	109.5
C3—O1—H1	104.1 (11)	Н9А—С9—Н9В	109.5
C8—O4—C9	115.30 (9)	O4—C9—H9C	109.5
C10	116.95 (9)	Н9А—С9—Н9С	109.5
N1—C1—N2	123.03 (10)	Н9В—С9—Н9С	109.5
N1—C1—C5	120.75 (10)	O5-C10-N3	126.23 (11)
N2—C1—C5	116.14 (9)	O5—C10—O6	124.12 (11)
C3—C2—N1	123.81 (10)	N3—C10—O6	109.62 (9)
C3—C2—C8	118.60 (10)	O6—C11—C12	105.89 (9)
N1—C2—C8	117.51 (10)	O6—C11—H11A	110.6
O1—C3—C2	126.16 (10)	C12-C11-H11A	110.6
O1—C3—C4	114.98 (10)	O6—C11—H11B	110.6
C2—C3—C4	118.86 (10)	C12—C11—H11B	110.6
O2—C4—N2	122.55 (10)	H11A—C11—H11B	108.7
O2—C4—C3	123.97 (11)	C17—C12—C13	118.85 (11)
N2—C4—C3	113.48 (10)	C17—C12—C11	120.61 (12)
N3—C5—C1	109.22 (9)	C13—C12—C11	120.53 (11)

supplementary materials

N3-C5-C6	111 64 (9)	C14 - C13 - C12	120 51 (12)
C1-C5-C6	110.88 (9)	C14—C13—H13	119.7
N3-C5-C7	106 23 (9)	C12—C13—H13	119.7
C1—C5—C7	108.70 (9)	C13-C14-C15	120.27 (13)
C6-C5-C7	110.02 (10)	C13—C14—H14	119.9
C5—C6—H6A	109 5	C15—C14—H14	119.9
C5—C6—H6B	109.5	C16-C15-C14	119.59 (12)
Н6А—С6—Н6В	109.5	C16—C15—H15	120.2
C5—C6—H6C	109.5	C14-C15-H15	120.2
Н6А—С6—Н6С	109.5	C15-C16-C17	119.98 (12)
H6B—C6—H6C	109.5	C15-C16-H16	120.0
C5—C7—H7A	109.5	C17—C16—H16	120.0
C5—C7—H7B	109.5	C_{12} C_{17} C_{16}	120.77 (13)
H7A—C7—H7B	109.5	C12—C17—H17	119.6
C5-C7-H7C	109.5	C16—C17—H17	119.6
$C_2 = N_1 = C_1 = N_2$	-1 26 (16)	N1 C1 C5 C7	102 55 (12)
$C_2 = N_1 = C_1 = N_2$	-1.30(10) -1.7804(0)	N1 - C1 - C5 - C7	-74.35(12)
$C_2 = N_1 = C_1 = C_3$	-1/8.04(9)	$\frac{1}{12} - \frac{1}{12} $	-74.33(12) -5.78(16)
C4 = N2 = C1 = N1	0.20(10)	$C_{9} = 04 = C_{8} = 03$	-3.78(10)
$C_{4} = N_{2} = C_{1} = C_{3}$	1/7.10(10)	$C_{3} = C_{4} = C_{6} = C_{2}$	1/1.9/(9)
C1 = N1 = C2 = C3	0.47(10)	$C_{3} = C_{2} = C_{8} = O_{3}^{2}$	4.00 (17)
$C_1 - N_1 - C_2 - C_8$	-170.14(10)	N1 = C2 = C8 = O3	-179.13(10)
N1 = C2 = C3 = O1	-1/9.23(10)	$C_{3} = C_{2} = C_{8} = O_{4}$	-1/3.74(10)
$C_{8} = C_{2} = C_{3} = C_{4}$	-2.00(18)	N1 = C2 = C8 = O4	3.00 (14)
N1 = C2 = C3 = C4	1.43(17)	$C_{5} = N_{2} = C_{10} = O_{5}$	-11.21(19)
$C_8 - C_2 - C_3 - C_4$	178.00 (10)	C_{3} N_{3} C_{10} C_{6}	1/0.86 (10)
C1 = N2 = C4 = C2	-1/8.10(11)	C11 = 06 = C10 = 05	5.83 (18)
C1 = N2 = C4 = C3	1.58 (16)	C11 - 06 - C10 - N3	-1/6.18(10)
$01 - C_3 - C_4 - 0_2$	-2.06 (18)	C10-06-C11-C12	1/3.06 (10)
$C_2 - C_3 - C_4 - O_2$	177.35 (11)	06-011-012-017	137.37 (11)
O1 - C3 - C4 - N2	178.27 (10)	06-011-012-013	-43.44 (15)
$C_2 - C_3 - C_4 - N_2$	-2.32(16)	C17 - C12 - C13 - C14	0.16 (18)
C10—N3—C5—C1	63.17 (13)	C11—C12—C13—C14	-179.05 (11)
C10—N3—C5—C6	-59.82 (14)	C12—C13—C14—C15	0.83 (19)
C10—N3—C5—C7	-179.76 (10)	C13—C14—C15—C16	-0.91 (19)
N1—C1—C5—N3	-141.95 (10)	C14—C15—C16—C17	0.00 (19)
N2—C1—C5—N3	41.15 (12)	C13—C12—C17—C16	-1.07 (17)
N1—C1—C5—C6	-18.51 (14)	C11—C12—C17—C16	178.14 (11)
N2—C1—C5—C6	164.59 (10)	C15-C16-C17-C12	1.00 (18)

II. Jun a and have	1	18	0)
Hyarogen-bond	geometry	(A,	-)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
N3—H3···O5 ⁱ	0.882 (15)	2.133 (15)	2.8911 (14)	143.7 (12)
N2—H2···O2 ⁱⁱ	0.938 (16)	1.886 (16)	2.8135 (16)	169.3 (13)
O1—H1…O3	0.918 (17)	1.788 (17)	2.6163 (14)	148.7 (16)
Symmetry codes: (i) x , $-y+1/2$, $z+1/2$; (ii) $-x+1$, $-y$, $-z+2$.				

Fig. 2

